A tale of two species: vermilion and sunset rockfish in the Southern California Bight

Aimee A. Keller ${ }^{\text {* }}$, John H. Harms ${ }^{1 *}$, Anna Elz², John R. Wallace ${ }^{1}$, Jim A. Benante ${ }^{3}$, and Aaron Chappell ${ }^{4}$
*equal first co-authors
${ }^{1}$ Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA
${ }^{2}$ Lynker Technologies, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington 98112, USA (current address: Fred Hutchinson CRC 1100 Fairview Ave. N. S5153, Seattle, Washington 98109, USA)
${ }^{3}$ Pacific States Marine Fisheries Commission, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, Washington, 98112, USA
${ }^{4}$ Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Newport, Oregon 97365, USA

Abstract

The vermilion rockfish complex consists of two distinct species, vermilion rockfish (Sebastes miniatus) and sunset rockfish (S. crocotulus) with clear haplotypic differences. Due to a one-way mitochondrial introgression from vermilion into sunset rockfish a high proportion (20-30\%) of fish with a vermilion haplotype are characterized as sunset based on nuclear genotype (introgressed sunset, hereafter, introgressed). Here we examined differences in the distribution and biological attributes of vermilion and sunset rockfish (including introgressed individuals) collected during a fisheries independent groundfish survey conducted with hook and line gear in the Southern California Bight in 2014. We saw significant differences in spatial distribution (latitude, depth, and distance from the nearest port and mainland) and biological characteristics (average size, size frequency distribution, weight-length and size-depth relationships) between vermilion rockfish and both introgressed and sunset rockfish but no differences between sunset and introgressed fish. Our analyses established that introgressed and sunset rockfishes shared similar biological and geographic characteristics, with no significant differences based on the features we examined. Consequently, we explored the relationship between the catch of vermilion rockfish collected per site, relative to the combined presence of vermilion, introgressed and sunset rockfishes, and a suite of co-located environmental and geographic variables using binomial generalized additive models (GAMS). The best model explained 95.0% of the deviance, indicating that the occurrence of vermilion, introgressed, and sunset rockfishes depended on latitude, longitude, depth, dissolved oxygen, temperature and distance from port.

1. Introduction

Cryptic speciation appears somewhat common among rockfishes (genus Sebastes) in the NE Pacific Ocean with examples including rougheye (Sebastes aleutianus) and blackspotted (Sebastes melanostictus) rockfish (Gharrett et al., 2005), vermilion (Sebastes miniatus) and sunset (Sebastes crocotulus) rockfish (Hyde et al., 2008), blue (Sebastes mystinus) and deacon (Sebastes diaconus) rockfish (Frable et al., 2015), and others. In general, rockfishes are economically valuable species supporting commercial and recreational fishing ventures along the US west coast (Love et al., 2002; Warlich et al., 2018). Since rockfish life history characteristics (long life, slow growth, low fecundity) make them particularly vulnerable to overexploitation (Love et al., 2002), successful management of rockfish cryptic pairs, in particular, may benefit from identification to the level of species. Taxonomic ambiguity, coupled with life history differences may otherwise result in inappropriate pooling of data, impacting reliability of information on life history parameters, distribution and catch used to inform stock assessments (Garvin et al., 2011; Love, 2011; Hicks et al., 2014). For cryptic species complexes, which cannot be distinguished visually, genetic analyses remains one of the best avenues for separation into individual species (Rocha-Olivares et al., 1999; Rocha-Olivares and Vetter, 1999). Nominal vermilion rockfish, which includes the two sister species (vermilion and sunset rockfish) that cannot be reliably separated by anglers or port samplers in the field, is a valuable recreational groundfish fishery on the west coast (MacCall, 2005) and when not separated into component pairs is the most abundant groundfish collected during the Northwest Fisheries Science Center's Southern California Shelf Rockfish Hook and Line Survey (hereafter called H\&L survey) (Keller et al., 2019). Uncovering potential biological,
environmental and geographic differences for the vermilion and sunset rockfishes is thus particularly important for successful management of this heavily exploited species complex. Once identified, such differences may help clarify historic catch and landings data, generate more accurate life history profiles and reduce uncertainty for stock assessments. Without definitive species identification, management measures based on spatial or depth restrictions could favor one component of the complex over the other and lead to overexploitation (Hyde et al., 2008).

Hyde et al. (2008) recognized vermilion rockfish (S. miniatus) as a cryptic species pair and proposed naming the second species, S. crocotulus, sunset rockfish. Despite this speciation, a reproductive barrier did not exist between these two species. Specifically, they found that all sunset rockfish had haplotypes and genotypes that assigned together with high likelihood. However, many (>35\%) of the fish with the vermilion haplotype in deeper water (>100 m) also assigned to the same genotype as sunset rockfish. Hyde et al. (2008) attributed this second group of vermilion rockfish, i.e. those with disagreement between mitochondrial DNA (mtDNA) haplotype and nuclear genotype, to a one-way mitochondrial introgression from vermilion into sunset rockfish (introgressed sunset, hereafter introgressed).

Because of the relatively recent discovery of cryptic speciation within nominal vermilion rockfish (i.e. the vermilion complex), the distribution and biology of the component species pair, as well as introgressed forms, remains largely undescribed (Love and Passarelli, 2020). Prior to separation, Love et al.
(2002) reported a geographic range for the combined species complex from Prince William Sound, Alaska to Islas central Baja California with a depth range from 12-478 m. Love et al. (2002) further noted a maximum size of 76 cm and maximum age of 60 years for vermilion rockfish, with females larger and longer lived than males. Following separation, Hyde and Vetter (2009) describe true vermilion rockfish as abundant from central Oregon to Punta Baja, Mexico at depths <100 m. Sunset rockfish, however, occurred primarily south of Pt. Conception, CA at depths $>100 \mathrm{~m}$ with both species thought to display high site fidelity following the pelagic larval and juvenile life stages. Both vermilion and sunset rockfishes associate with rocky, high relief habitat but Hyde and Vetter (2009) noted that adult vermilion rockfish occur primarily at shallower depths (usually <100 m) than sunset rockfish (usually $>100 \mathrm{~m}$).

On the US west coast, the vermilion-sunset complex is economically very valuable, particularly within the recreational sector. In 2019, the complex was the third most-commonly landed species on the coast among recreational anglers and the most commonly
landed recreational species in California (RecFIN, extracted 12/13/2021). Annual removals have increased steadily in recent years (2011 to 2019) (Dick et al., 2021). A recent federal stock assessment reported the combined catch for the complex south of Pt .

Conception, CA and noted that the recreational fleet accounted for the majority of historical catch (Dick et al., 2021). The vermilion complex is currently managed in aggregate with other minor shelf rockfish species and contributes to the combined overfishing limit (OFL) for this group, which is not being exceeded. Total mortality of the vermilion complex, however, has exceeded their component OFL contribution in southern California from 2015-2019. Harvest rates for the vermilion complex peaked in southern California in the 1990s, and then declined to near-target fishing levels for the past two decades, though rates have been elevated in recent years (Dick et al., 2021).

Management measures enacted to protect overfished rockfishes in the early 2000s (such as the Rockfish Conservation Area and Cowcod Conservation Areas), often relied on depth restrictions (PFMC, 2008, 2011; Mason et al., 2012). By limiting fishing to depths less than 36 to 110 m , these spatial closures may have
unintentionally afforded greater protection to the deeper-dwelling sunset rockfish versus vermilion. Recently elevated recreational harvest rates may indicate that overexploitation of the complex is a potential concern in the near future in a scenario where impacts on vermilion rockfish may be obscured by a more abundant sunset rockfish population responding to the disparate protection afforded by spatial management measures. The recent increase in recreational catch highlights a need to separate this highly sought after complex into individual species for management purposes.

Here we examined the distribution and biological characteristics for vermilion and sunset rockfish to add to the sparse information currently available on size, weight, depth, weight-length relationship and frequency distributions (latitude, depth, distance from mainland and port, length, weight). We used data collected during the $2014 \mathrm{H} \& \mathrm{~L}$ survey conducted in the Southern California Bight (SCB) since genetic sequencing data for the vermilion-sunset complex are currently unavailable for additional years. Our goal was to examine the distribution and biology of vermilion and sunset rockfish and evaluate if introgressed fish were more similar to vermilion or non-introgressed sunset rockfish. We conducted a rigorous comparison of their respective spatial and depth distributions as well as various biological attributes to answer questions on how vermilion and sunset rockfish differ and to what degree introgression manifests as a biologically intermediate form of the two
species. Definitive species identification for the vermilion/sunset complex, with updated information on distribution and biology, will provide an essential step in improving future species-specific stock assessments for these recreationally and commercially important groundfish.

2. Materials and Methods

2.1 Survey design and samples

In 2014, the NWFSC conducted an annual fishery independent survey in untrawlable habitat (reefs, banks, and hard-bottom) off the southern California coast (Harms et al., 2008, 2010; Keller et al., 2019). Sampling occurred at fixed sites from late September through early October aboard vessels chartered from the local sportfishing fleet, also commonly referred to as commercial passenger fishing vessels (CPFV). Sampling sites were located via a differential global positioning system (DGPS) navigation unit (Garmin 152, Garmin International Inc., Olathe, Kansas, USA) with each site visited once. Vessel captains fished between depths of 37229 m (median $103 \mathrm{~m}, \mathrm{IQR} 55 \mathrm{~m}$) within a 91.4 m (100-yard) radius established around each site to allow flexibility in response to prevailing wind and weather conditions.

At each site, three deckhands made five coordinated drops with hook and line gear set using rod and reel. Fishers used a vertical, five-hook gangion similar to recreational gear often used to capture shelf rockfishes in the study area. Both a shrimp fly lure (red and yellow bucktail bristle) and a frozen squid strip were used to bait each hook. Each drop had a maximum soak time of 5 minutes with a combined maximum catch of 75 fish per site. Following each set, we recorded the total number of recovered hooks relative to the 75 deployed hooks per site. Following capture, scientists subdivided the catch into managed versus non-managed species. For managed species, such as the vermilion complex, we then identified, counted, sexed,
measured (length, cm) and weighed (kg) each fish. In addition, we collected otoliths and tissue samples from all federally managed species.

We deployed a Sea-Bird SBE 19plus V2 SeaCAT Profiler CTD (Sea-Bird Electronics Inc., Bellevue, Washington) equipped with a calibrated SBE 43 polarographic membrane-type oxygen sensor at each site to provide water column profiles for dissolved oxygen ($\mathrm{DO}, \mathrm{mL} \mathrm{L}^{-1}$), salinity (S , ppt), temperature ($\mathrm{T},{ }^{\circ} \mathrm{C}$) and on bottom depth (Z, m).

2.2 Tissue collection and DNA techniques

During the 2014 H\&L survey, we collected tissue ($\sim 1 \mathrm{~cm}^{2}$) for DNA extraction from individuals identified in the field as nominal vermilion rockfish. Tissue samples from left pectoral fins were stored and dried on chromatography paper without alcohol preservative (LaHood et al., 2008). Initially we used mtDNA to separate vermilion and sunset rockfish to species but following Hyde et al. (2008), who identified a one-way introgression of mtDNA from vermilion into sunset (thus rendering a species call of vermilion rockfish ambiguous), we used the mtDNA marker results to delineate non-introgressed sunsets from individuals with vermilion haplotypes. Using microsatellite markers, we further examined individuals with vermilion haplotypes for evidence of introgression to delineate true vermilion from introgressed sunset rockfish.

We extracted genomic DNA from 2-mm discs punch-cut from each paper-mounted finclip (LaHood et al., 2008) using a Chelex-100 (Bio-Rad Laboratories) and proteinase-K boiling technique altered to accommodate a 96-well format (Miller and Kapuscinski, 1996; Hyde et al., 2005). We completed the initial separation of the vermilion-sunset species complex into species via single nucleotide polymorphism (SNP) assays. We sequenced 1141 base pair (bp) of the cytochrome b (cytb) mitochondrial locus (mtDNA) (Roches-Olivares and Vetter, 1999 and
references therein) for three vermilion vouchered tissues, and additional sequences from GenBank for known species, including the closely related canary rockfish (S. pinniger).

Based on sequence information we chose two-mtDNA cytb SNPs to differentiate vermilion and sunset rockfishes into species and a third SNP that excluded canary rockfish. Diagnostic sites were developed into 40X custom Taqman-minor-groove binding allelic discrimination assays (Applied Biosystems, Foster City, CA) which included the following primers for sunset rockfish (forward: 5'ACCGTTATCACCAACCTACTCTCT 3'; reverse: 5'GTAAGGGTT GCATT GTCTACTGAGA 3') and vermilion rockfish (forward: 5'CCCGATTCTTTGCTTT CCACTTC 3'; reverse: 5'GGAAAAGGAGGTGGACTATGGTT) and fluorescent probes for sunset rockfish (VIC: 5'CCACCTCAGATTCATT 3'; FAM: 5'CCACCTCAAATTCATT 3') and vermilion rockfish (VIC: 5'CCCTTTGTGATTGCAG3'; FAM: 5'CCCTTTGTAATTGCAG 3^{\prime}). Real-time polymerase chain reaction (PCR) was conducted in 384 -well plates in $5 \mu \mathrm{~L}$ reactions containing $2 \mu \mathrm{~L}$ DNA, $\mu \mathrm{L} 2.5 \mu \mathrm{~L} 2 \mathrm{X}$ Taqman Master Mix, $0.25 \mu \mathrm{~L} 20 \mathrm{X}$ SNP mix and $0.25 \mu \mathrm{~L}$ of water and included positives and negatives for each assay. Thermal-cycling was performed on an Applied Biosystems (Foster City, CA) ABI-7900 sequence detection system.

We used the results from the mtDNA SNPs to separate individuals into one group composed of suspected, non-introgressed sunsets and a second group that we believed included both true vermilion rockfish (e.g. vermilion haplotype and genotype) and introgressed sunset (with a vermilion haplotype but a sunset nuclear genotype) (Hyde et al., 2008). A microsatellite multiplex containing Sra7-7-PET, Sra7-25-NED (Westermen et al., 2005), Sra15-23-VIC (GenBank: AF269060.1, Westermen unpublished), and Spi6-FAM (Gomez -Uchida et al., 2003) was developed to assign a nuclear genotype to the mtDNA SNP identified vermilion samples (which included introgressed sunset) and complete their separation into introgressed sunset and
vermilion rockfish. As a QA-QC measure, we also ran a small subset of the known, nonintrogressed sunset samples (also originally identified by mtDNA SNPs) using the same method. Vermilion rockfish mtDNA, sunset rockfish mtDNA, and two controls of each species were separately amplified at each locus using PCR in $10 \mu \mathrm{~L}$ reactions consisting of 1 X buffer, 2 $\mathrm{mM} \mathrm{MgCl}, 1 \mathrm{X} \mathrm{BSA}$ (bovine serum albumin), $200 \mu \mathrm{M} \mathrm{dNTPs}, 0.2 \mu \mathrm{M}$ forward primer, $0.5 \mu \mathrm{M}$ reverse primer, 0.05 units of Taq polymerase, and $2 \mu \mathrm{~L}$ of DNA. PCRs were diluted such that two loci were included in each dilution volume (1:50 for Sra7-25-NED and Sra7-7-PET; 1:150 for Sra15-23-VIC and Spi6-FAM). Each $1 \mu \mathrm{~L}$ dilution was combined in $10 \mu \mathrm{~L}$ of LIZ500 (Applied Biosystems, Foster City, CA), denatured and analyzed using an ABI-3730 automated capillary sequencer (Applied Biosystems, Foster City, CA) for fragment analysis.

To assign groups based on allele frequency, samples with complete or one missing nuclear genotype were included in Structure analyses (version 2.1) with 50,000 burn-in steps, 100,000 iterations and two inferred clusters $(\mathrm{k}=2)$ (Pritchard et al., 2000; Hyde et al., 2008). Nominal vermilion rockfish were assigned as either true vermilion or introgressed using an assignment criteria $>90 \%$.

2.3 Distribution and CPUE

To examine geographic distributions for the three subgroups we calculated site-specific CPUE rates in 2014. We calculated CPUE (n site ${ }^{-1}$) for vermilion, introgressed and sunset rockfishes as the total number of individuals caught divided by the proportion of the full complement of 75 hooks recovered at the end of each set (i.e. $75 \times$ catch/hooks recovered). This standardization allowed for comparisons in catch among sites if recovery of the full complement of 75 deployed hooks did not occur following a set, hooks were lost, or a drop not conducted due to logistical issues. To provide information on differences in the distribution of vermilion,
introgressed and sunset rockfishes as sampled during the 2014 H\&L survey, we also examined catch-weighted average latitude $\left({ }^{\circ} \mathrm{N}\right)$, depth (m), distance from mainland and distance from port (nm) for each subgroup.

To test the null hypothesis of no significant differences in distribution among subgroups, we next statistically compared latitude, depth and distance (from mainland and port) among the three subgroups of the vermilion complex using ANOVAs with unequal variance (PROC GLM in SAS) with significant results followed by multiple comparison of means tests (Student-Newman-Keuls test, SNK). To control for unequal variance we used natural log transformed variables. Based on these analyses we then combined homogeneous subgroups (i.e. subgroups not found significantly different in the first analysis) and repeated the analyses to assess overall differences in distribution. We evaluated distance from port among subgroups as a proxy for fishing effort since catch and effort tend to decrease in recreational fisheries when travel time and fuel costs increase (Bellquist and Semmens, 2016; Frid et al., 2016).

We also compared frequency distributions for latitude, depth and distance (from mainland and port) between paired subgroups (initially vermilion versus sunset; vermilion versus introgressed; sunset versus introgressed) using non-parametric, two-sample KolmogorovSmirnov (K-S) analysis (SAS PROC NPAR1WAY, SAS v. 9.3, SAS Institute, Inc., Cary, North Carolina; Daniel, 1990). We used this analysis to test the assumption that the frequency distributions for each variable are the same among subgroups. Based on the initial K-S analysis, we next combined data in subgroups with no significant differences and repeated the analysis, for each variable, comparing the combined data to the remaining pair (e.g. sunset plus introgressed versus vermilion). We plotted binned frequency distributions (depth, latitude and distance) for subgroups with significant differences utilizing eleven bins for depth (60 to 225 m
by 15 m), 6 bins for latitude (32.2 to $34.6^{\circ} \mathrm{N}$ by $0.4^{\circ} \mathrm{N}$), and 7 bins for distance (0 to 105 bins by 15 nm).

2.4 Biological characteristics

2.4.1. Size analysis

We compared size information among the three subgroups as mean, minimum and maximum length (cm) and weight (kg) separated by sex and with sexes pooled. We also statistically compared average weight and length by subgroups and sex using ANOVAs with unequal variance followed by a multiple comparison of means test (SNK Student-NewmanKeuls Test). To control for unequal variance we used natural log transformed variables. 2.4.2 Weight - length relationship

We examined weight-length relationships for vermilion, sunset and introgressed rockfishes using the allometric equation:
$W=a L^{b}$
with weight, W in kg ; fork length, L in cm ; and constants a and b. After natural log transformations for both weight and fork length, we fit equations via generalized linear models (GLM) using R ver. 4.0.2 with an identity link function and normally distributed errors (Le Cren, 1951; R Core Team, 2020). We next examined if weight-length regressions varied among the subgroups and by sex (female, male). We initially fit equations using all data, then with and without sex, then combinations within subgroups. We compared these weight-length models using analysis of covariance (ANCOVA), with sex and subgroups as covariates. We determine relative support among all competing models with Akaike's Information Criterion ($\mathrm{AIC}_{\mathrm{i}}$) after calculating Δ_{i} as:
$\Delta_{\mathrm{i}}=A I C_{\mathrm{i}}-A I C_{\text {min }}$
with $\mathrm{AIC}_{\text {min }}$ the minimum AIC-value and the best model defined as $\Delta_{\mathrm{i}}=0$.

2.4.3 Size - depth relationship

Since rockfishes often exhibit ontogenetic migrations resulting in species-specific habitat depths with size (Love et al., 2002), we also examined variations in length and weight versus depth among the three subgroups of the vermilion-sunset complex. We used a procedure similar to that described above for weight versus length relationships to test the hypothesis of no difference in size with depth among subgroups. We compared length $(L, \mathrm{~cm})$ versus depth $(Z, \mathrm{~m})$ as:
$L=a Z^{b}$
and weight $(W, \mathrm{~kg})$ versus depth $(Z, \mathrm{~m})$ as:
$W=a Z^{b}$
with constants a and b for each relationship. We used natural log transformed variables (length, weight, depth) and fit the equations via GLM using the identity link function and normally distributed error (R Core Team, 2020). We tested the null hypothesis that covariates (subgroups and sex) have no effect on size versus depth via ANCOVA. We fit models in stages starting with a fit to all data without accounting for other effects, followed by adding the gender effect and then accounting for subgroups (two or three). We combined covariates (sex and subgroups) with no significant differences based on the ANCOVA analysis and summarized variations in size (length and weight) versus
depth. We determined relative support among models via AIC-values. For models with $\Delta_{i}<2$, that have substantial support relative to the best model (Burnham and Anderson, 2002), we calculated weighted AIC-values (w_{i}) following Wagenmakers and Farrell (2004).

To statistically examine length and weight frequency distributions we used nonparametric, two-sample K-S analysis as previously described. Based on the analyses we grouped homogeneous samples and examined paired differences for subgroups. We subsequently lumped subgroups with no significant differences to display results graphically and summarized length frequency distributions using twenty-four, $2-\mathrm{cm}$ bins from 16 to 64 cm . Similarly, we divided weight into twenty-four, 0.2 bins from 0.02 kg to 4.66 kg .

2.5 Modeling Species Composition

We evaluated the proportion of vermilion rockfish $\left(\mathrm{Pv}_{\mathrm{v}}\right)$ as CPUE (n site ${ }^{-1}$) relative to the sum of vermilion, introgressed and sunset CPUE (n site ${ }^{-1}$) using a binomial Generalized Additive Model (GAM), fitted to P_{V} as a function of environmental and spatial variables (Wood, 2006). In general, GAMs allow incorporation of non-linear relationships in the model through nonparametric smoothers thus offering some potential advantage relative to linear regression models (Hastie and Tibshirani, 1990). We included environmental measurements (salinity, temperature, dissolved oxygen, and bottom depth) and spatial elements (latitude, longitude and distance from the nearest major port or mainland) as explanatory variables in the model. We evaluated collinearity among predictor variables (environmental and spatial) for inclusion in GAMs, by calculating Pearson's correlation coefficients using R ver. 4.0.2 but retained all variables during the model exploration phase (R Core Team, 2020). We fit a binomial GAM with a logit link function using the "mgcv" package (version 1.28-34; Wood, 2011). To avoid losing information about the site-level precision of each proportion, we fit the model with prior weights equal to the
denominator of P_{V} (note: this is a special use of prior weights for GLM/GAMs with binomial errors in R, see stats::glm help, R Core Team, 2020). The model structure was:
$\operatorname{logit}\left(P_{V}\right) \approx a+s_{1}($ Long, Lat $)+s_{2}(D O)+s_{3}(S)+s_{4}(Z)+s_{5}(T)+s_{6}(D)$ (weights not shown) (5) where a binomial GAM with a logit link function (logit) is used to relate P_{v} (vermilion CPUE versus the sum of vermilion, introgressed and sunset CPUE) to the intercept term (a), longitude (Long, ${ }^{\circ} \mathrm{W}$) and latitude Lat, ${ }^{\circ} \mathrm{N}$), dissolved oxygen ($\mathrm{DO}, \mathrm{mL} \mathrm{L}^{-1}$), salinity (S , ppt), temperature $\left(\mathrm{T},{ }^{\circ} \mathrm{C}\right)$, depth (Z, m) and distance $(\mathrm{D}, \mathrm{nm}), s_{1}$ and s_{2-6} are two-dimensional and one-dimensional smooth functions respectively, in this case thin plate regression splines (Wood, 2006). The degrees of freedom for each smooth term in the GAM was constrained to four $(k=4)$, based on sensitivity analyses.

The most parsimonious model was selected based on AIC-values $\left(\Delta_{i}=0\right)$ by adding or removing covariates until no further reduction in AIC occurred. The rank degrees of freedom for AIC-values used in the analyses were adjusted following Wood et al. (2016). During the model exploration stage, we progressively evaluated which covariates produced the best model, based on reduction in AIC value, for each step in the analysis. In addition, we developed a parsimonious set of models with increasing number of variables to evaluate their use in management when a full suite of environmental measures may not be available.
3. Results

3.1 Hook and Line Survey and sampling in 2014

In 2014, we successfully sampled 162 sites from Point Arguello, CA $\left(34^{\circ} 30^{\prime} \mathrm{N}\right)$ to the US Mexico border ($32^{\circ} 00^{\prime} \mathrm{N}$ (Fig. 1). Sampling occurred from Sept. 28, 2014 to Oct. 8, 2014 aboard three chartered CPFVs, the F / V Mirage, F / V Toronado and F / V Aggressor (58 to 72 ft length overall). On average, we recovered $73(\pm 5.2 \mathrm{SD})$ of the 75 hooks deployed at each site.

In 2014, we recovered a full complement of hooks $(\mathrm{n}=75)$ at the majority of sites (58%) where the vermilion complex was captured. We recovered greater than 61 hooks at 116 sites and a low number of hooks $(\mathrm{n}=45)$ at a single site. We captured nominal vermilion rockfish at 117 of the 162 sites sampled in 2014 with a maximum catch of 60 per site (depth range 49.2 to 211 m). We recorded environmental data (depth, temperature, salinity, dissolved oxygen) at 106 to 117 of the sites where individuals of the vermilion complex were present.

3.2 DNA

The initial separation of the 2014 vermilion-sunset samples ($n=1730$) into species via SNP within the mtDNA genome revealed the presence of 839 vermilion, 887 sunset rockfishes, one canary rockfish and three failed assays due to insufficient DNA. Based on nuclear microsatellite markers, 550 of the 839 nominal vermilion rockfish were identified as true vermilion and 239 as introgressed fish with the remainder either classified as intermediate hybrids ($\mathrm{n}=31$) or with insufficient tissue or DNA to complete separation via microsatellites. A subset of sunset SNP mtDNA samples $(\mathrm{n}=49)$ were also evaluated with microsatellite markers and confirmed the majority $(\mathrm{n}=33)$ as true sunset. We excluded all intermediate hybrids, misidentifications and incomplete separations from further analyses.

3.3 Distribution and CPUE

We observed geographic variability in site-specific CPUE (n site ${ }^{-1}$) in 2014 between vermilion (Fig. 1a) versus introgressed (Fig. 1b) and sunset rockfish (Fig. 1c). Distribution charts visually indicate a more northerly occurrence of vermilion rockfish, particularly near Point Conception, CA (Fig. 1a). The high CPUE of vermilion rockfish in and around Pt. Conception also contributes to the difference in catch-weighted distance from the mainland relative to the other two subgroups (Fig. 2) given this area's remoteness from the closest fishing port.

Distributions for introgressed (Fig. 1b) and sunset Fig. 1c) rockfishes appear very similar, despite the higher CPUE observed for sunset rockfish (note difference in scale).

When adjusted by the number of hooks recovered per site, we observed a total catch of 1740 for the vermilion complex overall with 566 vermilion rockfish, 249 introgressed, and 925 sunset rockfish taken in 2014 (Table 1). We collected vermilion rockfish at 61 sites, introgressed at 59 sites, sunset at 87 sites (Table 1) and a combination of introgressed plus sunset rockfish at 97 sites. Based on catch-weighted averages, vermilion rockfish occurred at shallower depths (Fig. 2a), further north (Fig. 2b), and closer to the mainland relative to sunset and introgressed sunset rockfishes (Fig. 2c). We saw a low correlation $(\mathrm{r}=11)$ between depth and distance from the mainland at the sites $(\mathrm{n}=106)$ where the vermilion complex occurred in 2014. Although average catch-weighted distance from the nearest port was similar among the three subgroups (Table 1), both introgressed and sunset rockfishes exhibited substantially greater interquartile ranges for this metric relative to vermilion catch (Fig. 2d).

Significant differences existed in both means and frequency distributions (K-S test, see below) among the three subgroups for geographic location and depth. Statistical comparisons via ANOVA revealed highly significant differences ($\mathrm{p}<0.0001$) in depth, latitude and distance from both mainland and port for the vermilion-sunset species complex by subgroup (Table 2). When followed by multiple comparison tests (Student Newman-Keuls, SNK), we noted that vermilion rockfish were significantly shallower, further north, closer to the mainland and farther from fishing ports relative to both introgressed and sunset rockfish as separate subgroups. For significant ANOVAs, we subsequently combined subgroups with no differences (i.e. introgressed and sunset) and repeated the analysis. SNK tests revealed that depth, latitude and
distance from the mainland and port remained significantly different for vermilion rockfish compared to the combined introgressed and sunset rockfish group (Table 2).

Comparison of frequency distributions indicated highly significant differences (described below) between vermilion rockfish versus introgressed ($\mathrm{p}<0.0001$) and vermilion rockfish versus sunset rockfish ($\mathrm{p}<0.0001$) based on non-parametric, two-sample Kolmogorov-Smirnov analyses for depth, latitude, distance from the mainland and port but not between introgressed and sunset rockfish (Table 3). Similarly, we observed significant differences when we pooled data for introgressed and sunset and repeated the comparison with vermilion rockfishes (Fig. 3a). The depth frequency distribution for vermilion rockfish exhibited a generally normal pattern extending from ~ 70 to 135 m with peak occurrence centered at $\sim 100 \mathrm{~m}$ and none at depths >133 m (Fig. 3a). By comparison, introgressed plus sunset rockfish displayed a relatively uniform depth frequency distribution from ~ 90 to $\sim 165 \mathrm{~m}$ then decreased frequency at greater depths and very few at the shallowest depth interval (Fig. 3a). The latitudinal distribution for vermilion rockfish exhibited increasing frequency at higher latitudes while the significantly different distribution for sunset plus introgressed appeared uniform within the latitudinal range sampled with a slight peak $\sim 33.8^{\circ} \mathrm{N}$ (Fig. 3b). All subgroups exhibited a decline in frequency of occurrence with distance from the mainland; however, introgressed plus sunset rockfishes occurred at greater distances from the mainland than vermilion rockfish (Fig. 3c). Both vermilion rockfish and introgressed plus sunset rockfishes exhibited peak frequency of capture at $\sim 60 \mathrm{~nm}$ from the nearest port, but vermilion rockfish rarely occurred beyond this distance (Fig. 3d). Introgressed plus sunset rockfishes occurred at higher frequencies both closer to and further from port relative to vermilion rockfish (Fig. 3d).

3.4 Biological characteristics

3.4.1 Size analysis

Fork lengths (cm) and weights (kg) were available for 543 vermilion, 877 sunset and 235 introgressed rockfishes in 2014. For all subgroups, females attained greater maximum lengths and weights than males and on average tended to weigh more (Table 4). In general, the average size for vermilion rockfish (females, males and overall) also tended to be smaller with lower mean lengths (Fig. 4a) and weights (Fig. 4b) than sunset or introgressed rockfishes.

Based on ANOVAs, we found significant differences in size for the vermilion - sunset species complex by subgroups and sex (Table 5). Initial analyses revealed that both length and weight of vermilion rockfish (females and males) were significantly smaller than sunset and introgressed rockfish. Based on the SNK multiple comparison of means tests we saw no differences in size (length and weight) by sex between sunset and introgressed rockfish. After pooling these two subgroups we confirmed that vermilion rockfish were significantly smaller and weighed less when also compared by sex with the combined sunset plus introgressed subgroup (Table 5).
3.4.2 Weight - length relationship

ANCOVAs for weight-length relationships, based on measurements from vermilion $($ male $=274$, female $=267)$, introgressed $($ male $=120$, female $=115)$, and sunset rockfishes $($ male $=403$, female $=473)$, indicated differences by subgroup and sex $($ Table 6a). Model selection via the minimum AIC-value ($\Delta_{i}=0$), suggested the best model incorporated two subgroups (vermilion and a combination of introgressed plus sunset) in addition to sex (Table 6a). Predicted weight at length was greatest for females relative to males regardless of subgroup (Table 6b). Additionally, weight of vermilion rockfishes tended to increase more rapidly as a function of length relative to the combined introgressed plus sunset subgroup (Table 6b).

Vermilion rockfish exhibited significantly different length and weight frequency distributions compared with introgressed and sunset rockfishes (Table 7). Based on nonparametric Kolmogorov-Smirnov analysis, size distributions for vermilion rockfish were significantly different ($\mathrm{p}<0.0001$) when compared separately with either introgressed or sunset rockfishes (Table 7). However, length $(\mathrm{p}=0.29)$ and weight $(\mathrm{p}=0.09)$ distributions were not different between introgressed and sunset rockfishes. We subsequently pooled data for subgroups with no differences (introgressed and sunset) and confirmed significant differences (described below) between this combined group and vermilion rockfish for length ($\mathrm{p}<0.0001$) and weight ($\mathrm{p}<0.0001$) distributions (Table 7). Length distributions for vermilion rockfish peak at a smaller size ($\sim 46 \mathrm{~cm}$) and exhibit a narrower size range relative to introgressed and sunset rockfish (Fig. 5a). In addition, vermilion exhibited a severe truncation above 52 cm in length, which we did not observe in the combined introgressed plus sunset subgroup. We saw similar differences in weight frequency distributions with weights of introgressed and sunset rockfish encompassing a greater range and a more gradual decrease in frequency at higher values relative to vermilion rockfish (Fig. 5b).

3.4.3. Size - depth relationship

Length and weight varied significantly by depth within the vermilion-sunset complex with smaller individuals occurring at shallower depths ($\mathrm{p}<0.0001$). We initially used ANCOVA to determine if sex and subgroup should be included in the analyses of size versus depth. Results indicated that the most appropriate models included significant effects among subgroups ($\mathrm{p}<0.05$) but no significant effects for sex. Model selection, based on AIC, indicated that the most parsimonious models for both length and weight versus depth included separation into two subgroups (vermilion rockfish versus a combination of introgressed and sunset rockfishes)
without separation by sex (Table 8a). There was substantial support ($\Delta_{\mathrm{i}}<2$) for secondary models that included separation into two subgroups, as above, but with separation by sex (Table 8a). Weighted AIC-values (w_{i}, not shown) indicated the most parsimonious models were 1.4 (length versus depth) and 2.6 (weight versus depth) times more likely to be better than the second best models (Wagenmakers and Farrell, 2004). Predicted length and weight for vermilion rockfish both increased more rapidly at depth relative to introgressed and sunset rockfishes (Fig. 6a, b). Depth explained 27% of the variation in length and 27% of the variation in weight for vermilion rockfish (Table 8b). For introgressed and sunset rockfishes combined, regression analysis indicated that 46% of the variation for weight and length were explained by depth.

3.5 Modeling species composition

We initially evaluated both distance from port and distance from the mainland for inclusion in GAM models. But since they were highly correlated $(\mathrm{r}=0.89)$, we eliminated distance from the mainland for further consideration since distance from port produced lower AIC-values during the model exploration phase. We also observed high correlation coefficients ($\mathrm{r}>0.75$, absolute value) for salinity with other covariates (depth, dissolved oxygen and temperature) (Table 9). But we retained this covariate during model exploration because of potential value to fishery managers during future modeling exercises when the full suite of variables may not be available. The best GAM relating the proportion of vermilion rockfish (P_{v}) to environmental and geographic variables included latitude, longitude, depth (Z), distance from nearest port (D), dissolved oxygen (DO), and temperature (T) (Table 10). The optimal model explained 95% of the deviance with an $r^{2}=0.947$. Salinity was eliminated from the final model based on AIC analysis.

The average percent deviance explained by the models increased from 55.7% as covariates were added (range 55.7 to 95.0%). The greatest improvement in deviance explained (+ 35.4%) occurred with the addition of depth to the GAM. Unbiased risk estimator (UBRE) values varied with addition of covariates. UBRE-values ranged from 0.35 for the optimal model to 5.16 for latitude and longitude and indicated that overfitting did not occur (Table 10). AIC-values and UBRE-values were highly correlated $(\mathrm{r}=1.00, \mathrm{n}=8)$ for the best models shown in table 10 .

We plotted the functional form of the relationships for depth, distance from port, dissolved oxygen and temperature with the predicted proportion of vermilion rockfish $\left(\mathrm{P}_{\mathrm{v}}\right)$ based on the GAM analysis. Partial GAM plots, identifying the additive effects of significant covariates, indicate an increase in P_{v} with dissolved oxygen and distance from port (Fig. 7). The relationships with distance to port appear linear while a more complex relationship occurred with DO. In contrast, predicted P_{v} significantly decreased with both depth and temperature and displayed non-linear response curves (note: shaded areas represent 95% confidence intervals). Note that ranges on x - and y -axes differ among panels. The y -axis reflects the effect of each covariate on P_{v}. The relative density of data is shown by the "rug" along the x -axis.

We further examined relationships among the covariates that explained a high percentage of deviation (>93\%) in binomial GAM models by examining the proportion of CPUE for vermilion rockfish and introgressed plus sunset rockfishes relative to latitude, distance from port and dissolved oxygen versus depth at each site (Fig. 8).

Results demonstrate that the highest proportions of vermilion rockfish CPUE occurred in a narrow band of sites north of $\sim 34^{\circ} \mathrm{N}$ and shallower than $\sim 110 \mathrm{~m}$. Elevated proportions of introgressed plus sunset rockfish CPUE occurred at depths $>125 \mathrm{~m}$ in the most northern extent of their range $\left(>34^{\circ} \mathrm{N}\right)$ (Fig. 8a). South of $\sim 33.5^{\circ} \mathrm{N}$, a high proportion of introgressed plus sunset
rockfish CPUE occurred throughout their full depth range but rarely in shallow water ($<80 \mathrm{~m}$) north of $34{ }^{\circ} \mathrm{N}$. Results further indicated that vermilion rockfish and the combined introgressed plus sunset subgroup were unevenly distributed with respect to distance from port and dissolved oxygen, particularly at shallow depths (Fig. 8b, 8c). Vermilion rockfish were concentrated in an area greater than 40 nm from the nearest port at depths $<110 \mathrm{~m}$ (Fig. 8b). Introgressed plus sunset rockfishes dominated areas <20 nm from the nearest fishing ports at relatively shallow depths ($<100 \mathrm{~m}$) and areas $>40 \mathrm{~nm}$ from ports but at depths deeper than 120 m (Fig. 8b). Sites with high dissolved oxygen concentrations ($>4 \mathrm{~mL} \mathrm{~L}^{-1}$) were characterized by CPUEs dominated by the sunset plus introgressed rockfish subgroup (Fig. 8c) while vermilion rockfish CPUE was concentrated at depths $<110 \mathrm{~m}$ and oxygen levels from ~ 2 to $4 \mathrm{~mL} \mathrm{~L}^{-1}$. The sunset plus introgressed rockfish subgroup also occurred at a range of dissolved oxygen levels from ~ 1.5 to $3.5 \mathrm{~mL} \mathrm{~L}^{-1}$ at depths $>110 \mathrm{~m}$ (Fig. 8c).

4. Discussion

This study focused on life-history characteristics and population ecology (catch and distribution) for the recreationally and commercially important vermilion-sunset cryptic species pair in southern California. We provided preliminary biological information on the individual components of the species complex while also examining whether the subgroup identified as introgressed sunset rockfish possessed characteristics more closely aligned with either sunset or vermilion rockfish. Our results suggest that, based on distribution and the biological characteristics examined here, introgressed fish do not represent an intermediate form between vermilion and sunset rockfish but rather behaved in all cases as sunset rockfish. In addition, our results indicate that the characteristics for introgressed and sunset rockfish examined here are statistically different from vermilion rockfish. The introgressed subgroup represented a
substantial proportion $(\sim 21 \%)$ of the total sunset rockfish catch $(\mathrm{n}=1174)$ in 2014 within the SCB. Based on a smaller sample size, Hyde et al. (2008) estimated introgressed sunset rockfish comprised $\sim 34 \%$ of the overall sunset rockfish catch within a similar latitudinal and depth range sampled from 1993 through 2006. While vermilion and sunset rockfishes were found to be genetically distinct in 2008, this study demonstrates that significant distributional and biological differences exist between this cryptic pair. Our research suggests that without careful scrutiny, depth and/or area-based fishing restrictions might place disproportionate effort on the two species. In addition, this research suggests the need to incorporate additional years of data, examine a wider portion of the coast and consider separate management of these important groundfishes.

The biology and distribution information presented here supplement the relatively few prior publications devoted to the distinct taxonomic components of this cryptic species pair along the US West Coast (Hyde, 2007; Hyde et al., 2008; Hyde and Vetter, 2009). Because of the confusion between the two species, most prior studies on biology and ecology likely included data pooled across both species rather than species-specific information. Love et al. (2002) noted that vermilion rockfish, inclusive of sunset, extended from central Baja California to Alaska at depths of 12 to 478 m . Following separation, vermilion rockfish was described as abundant from central Oregon to Mexico at depths $<100 \mathrm{~m}$ while sunset rockfish dominated the region south of Pt. Conception, California at depths >100 m (Hyde et al., 2008; Hyde and Vetter, 2009). The north-south variation in distribution between the components of the vermilion complex reflects similar latitudinal differences reported for other cryptic rockfish pairs such as blue (Sebastes mystinus) and deacon rockfish (Sebastes diaconus) off Oregon and California (Frable et al., 2015; Vaux et al., 2019). Our results support Hyde et al.'s (2008) findings that sunset rockfish
dominant the species complex south of Pt. Conception, particularly in deeper waters. Hyde et al. (2008) observed that sunset rockfish accounted for 54% of the total catch of this cryptic pair south of $34.5^{\circ} \mathrm{N}$ in 1993-2006 $(\mathrm{n}=428)$ while we identified 67.5% of the complex as sunset rockfish plus introgressed individuals south of Pt. Conception in $2014(\mathrm{n}=1740)$. This increase in the proportion of the complex attributable to introgressed plus sunset rockfish within the SCB could reflect differences in sampling between the two studies or perhaps greater exploitation of vermilion rockfish in recent years as fishing pressure shifted to shallower waters following depth based management closures.

Hyde et al. (2008) reported a common depth range for vermilion rockfish from 30 to 100 m and a deeper range for sunset rockfish, primarily from 100 to 200 m . They noted few sunset in water shallower than 100 m and emphasized a high degree of bathymetric segregation between vermilion and sunset rockfishes at 100 m . Here we observed a depth range of 64 to 133 m for vermilion rockfish with an average catch-weighted depth of 98 m . Introgressed and sunset rockfish occurred at depths from 49 to 211 m with an average depth of 131 m but exhibited considerable overlap with vermilion rockfish in waters $<133 \mathrm{~m}$. We found 29% of the sunset plus introgressed rockfish catch at depths $<100 \mathrm{~m}, 25 \%$ within the $100-133 \mathrm{~m}$ depth range and 46% deeper than 133 m . We found more overlap between the components of the cryptic pair in shallower water relative to that reported by Hyde et al. (2008) and that complete separation occurred at depths >133 m. Whether this apparent shift in depth distribution over time is attributed to fishery removals, shifts in prey distribution, differences is sampling distribution or changing oceanographic profiles, remains to be explored.

In addition to differences in depth, we found significant differences in average latitude and distance from the mainland and fishing ports between vermilion rockfish and introgressed
plus sunset rockfish, consistent with Hyde et al.'s (2008) observation that vermilion rockfish occur further north and closer to the coast. Geographic comparisons of CPUE further emphasized differences in distribution between the species. Elevated CPUE for vermilion rockfish occurred near Pt. Conception and the northern Channel Islands. Introgressed plus sunset rockfish exhibited greater prevalence and were generally evenly distributed throughout the SCB with elevated CPUE near Pt. Conception, across the outer Channel Islands region, along the mainland, and within the Cowcod Conservation Areas (CCAs).

We also observed significant differences in frequency distributions for latitude, distance from mainland and distance from the nearest port. Frequency distributions for latitude indicate increased frequency of occurrence for vermilion rockfish further north with sunset rockfish more evenly distributed throughout the SCB. Both species exhibited similar distribution patterns for distance from the mainland with highest frequency at sites closest to the mainland, decreased occurrence offshore but with vermilion rockfish not found as far from land as their sister species. In contrast, vermilion rockfish, unlike introgressed plus sunset, exhibited their highest frequency of occurrence at their greatest distance from port (60 nm). As distance from port represents a proxy for fishing effort (Miller et al., 2014; Bellquist and Semmens, 2016; Frid et al., 2016), our results suggest that Pt. Conception, the region with the highest vermilion rockfish catch from the H\&L survey, in fact experiences decreased fishing pressure from the recreational fleet and perhaps serves as a refuge for vermilion rockfish in the SCB. The introgressed plus sunset rockfishes did not exhibit this pattern with no apparent correlation between elevated fishing pressure and distance from port.

Love et al. (2002) reported a maximum length of 76 cm and weight of 6.8 kg for the complex with females larger than males. MacCall (2005) found lengths up to $\sim 70 \mathrm{~cm}$ for
nominal vermilion rockfish caught in southern California fisheries, particularly in years prior to 1986. We also found that the maximum size for females was greater than males following separation by species but somewhat lower than prior reported maxima (56 to 63 cm). We additionally observed that average lengths and weights for introgressed and sunset rockfish were greater than for vermilion rockfishes. When examining larger size classes, MacCall (2005) noted that fish exceeding 54 cm occurred regularly through 1986 but rarely afterwards. Here less than 1% of vermilion rockfish exceeded 54 cm compared to $\sim 13.7 \%$ of sunset plus introgressed rockfish larger than 54 cm . MacCall (2005) further found that the largest vermilion seen in southern California catch from 1987 to 2004 rarely exceeded $46-48 \mathrm{~cm}$. In contrast, we recorded 20% of vermilion and $\sim 8.5 \%$ of introgressed plus sunset rockfish catch in the 46 to 48 cm size range. Length composition data from Dick et al. (2021) suggest increased catch of larger fish $(50-60 \mathrm{~cm})$ from 2018 to 2021 within the commercial hook and line fishery but little change in size of recreational catch. Since we found no species-specific size data for comparison with our results, we cannot determine if these differences reflect variation in sampling area or depth or if they indicate that size has increased for both components of the complex since the period of heavy exploitation in the 1980s. Additionally, some of the apparent increase may be tied to the H\&L survey sampling areas that have been closed to fishing for 20+ years. Prior to depletion of the vermilion population in the 1980s-early 1990s, Miller and Gottshall (1966) reported a longterm average weight of $1.77 \mathrm{~kg} \mathrm{fish}^{-1}$ along the west coast south of Oregon. We found an average weight of 1.36 kg for vermilion rockfish and a higher average (1.73 kg) for introgressed plus sunset rockfish. Differences between the historical and current averages can be attributed to variation in geographic area and separation into component species.

Both length and weight frequency distributions differed significantly between vermilion and introgressed plus sunset rockfishes with no prior species-specific data available for comparison. However, similar to what we saw here for vermilion, MacCall (2005) and more recently, Dick et al. (2021) reported truncated length distributions for the complex overall, particularly at sizes greater than 46 cm . Importantly, although the vermilion rockfish length frequency distribution appears severely truncated as in the past, truncation now occurs at an overall larger size ($>52 \mathrm{~cm}$) relative to earlier years. Introgressed plus sunset length and weight frequency distributions did not exhibit severe truncation at larger sizes but gradually declined from peak to maximum size. Since truncation in size often associates with exploitation, our results suggest that vermilion rockfish may currently be more highly exploited than their species pair (see below).

Our analyses revealed significant differences in weight-length relationships between vermilion and introgressed plus sunset rockfish with the best model incorporating sex. Data indicated that weight, by sex, increased faster as a function of length for vermilion rockfish relative to introgressed plus sunset, perhaps reflecting their more northerly distribution in cooler, more productive waters near Pt. Conception. Results also indicated that females increased weight faster than males regardless of species. Earlier studies reported no difference in weight-length relationships by sex for vermilion rockfishes (Phillips et al., 1990; Love et al., 1990; MacCall, 2005; Dick et al., 2021). However, studies on the closely related canary rockfish (Sebastes pinniger) reported differences in weight-length relationships by sex (McClure, 1982; Thorson and Wetzel, 2015; Keller et al., 2018), as similarly reported for multiple other species of rockfishes (Love et al., 1990). For vermilion rockfish, differences between sexes demonstrated here may have been masked by fitting earlier data to the species complex rather than its distinct
taxonomic components (MacCall, 2005; Dick et al., 2021), highlighting a common error when neglecting to manage cryptic pairs as individual species. Prior coefficients reported for the complex (e.g. intercept $=-10.957$, slope $=2.995)$ fall between the species-specific values reported here (Love et al., 1990; MacCall, 2005).

We saw significant differences in length and weight versus depth relationships between vermilion rockfish and introgressed plus sunset rockfish but no differences between males and females for either subgroup. Very little historical information exists on these relationships for the vermilion complex. Love et al. (2002) noted that small nominal vermilion rockfish commonly occurred at depths of 6 to 36 m with juveniles gradually found deeper. Hyde et al. (2008) similarly noted that sunset rockfish taken at depths less than 100 m were young of year or subadult fish ($<25 \mathrm{~cm}$). Here we saw an average length of 32.8 cm for introgressed and sunset rockfish from depths of 68 to 100 m but smaller subadult fish (average length 27.2 cm) present at depths from 68 to 80 m . Within both depth ranges vermilion rockfish tended to be somewhat larger than sunset rockfish. On average, vermilion rockfish were 5.6 cm larger in water less than 100 m and 8.0 cm larger at depths less than 80 m . Similar to other rockfish species, including closely related canary rockfish, nominal vermilion rockfish undergo an ontogenetic migration with increasing size at depth (Boehlert, 1977, 1978, 1980; Love et al., 2002; Sampson, 1996).

Based on GAM analysis, we saw that the proportion of vermilion rockfish relative to overall catch of the species complex could be explained as a function of environmental and geographic covariates. We found that the proportion of vermilion rockfish within the SCB was related to latitude, longitude, depth, dissolved oxygen, distance from port and temperature. Geographic location (latitude, longitude) produced the best initial GAM followed by the greatest improvement in fit with the addition of depth. The inclusion of other environmental variables
(dissolved oxygen and temperature) as well as distance from nearest port further improved the ability to predict the proportion of vermilion rockfish relative to the overall catch of the species complex. In general, the proportion of vermilion rockfish increased with dissolved oxygen concentration and distance from port but decreased with depth and temperature. We are hopeful that our modeling exercise provides a potential framework for separation of historical data in the absence of DNA evidence provided some of these ancillary data exist.

Among recreational fisheries, the vermilion complex ranks as one of the highest in value along the US west coast. Based on data collected in the SCB during the NWFSC's annual H\&L surveys from 2014 to 2016, the vermilion-sunset complex represented 30% of the overall catch and was the survey's most abundant species (Keller et al., 2019). The complex was captured at 170 of the 196 sites sampled during these three years with only bocaccio (Sebastes paucispinis) occurring at more frequent sampling sites $(\mathrm{n}=185)$. With the complex separated into two distinct taxonomic subgroups, the sunset-introgressed subgroup comprised 20% of the total catch and vermilion rockfish 10%. With this separation into component species, bocaccio becomes the most frequently caught species in the 2014 H\&L survey (30\%). He and Field (2017) similarly noted that bocaccio accounted for $25-30 \%$ of the historical catch in southern California over the last century.

An initial stock assessment for vermilion rockfish occurred in 2005, prior to the discovery that vermilion was in fact a species complex (MacCall, 2005; Hyde et al., 2008). Despite the recognized commercial and recreational value for the vermilion species complex, the assessment was not formally accepted for management purposes by the Pacific Fishery Management Council (PFMC). A second assessment, planned in 2013 was abandoned due to the lack of sufficient data to separate the cryptic pairs into component species (PFMC, 2013). The
most recent assessment was also based on the complex rather than a separation into vermilion and sunset rockfish (Dick et al., 2021). During the interim between the first two attempted assessments, Hyde et al. (2008) provided information on the depth and geographic distribution of the complex's component species. Although these species should be separated, it is not straightforward to do so in historical data sets.

Like many single species of rockfishes, abundance for the vermilion complex declined through the 1990's due to excessive exploitation. MacCall (2005) presented results for two vermilion assessment models off California (subdivided at Pt. Conception), that at the time incorporated more than one genetically distinct species. The 2005 assessment, based on MacCall's (2005) single species assumption, indicated that the complex was recovering due in part to a strong 1999 year class and would be above a precautionary exploitation rate of 30% for regions north and south of Pt. Conception by 2007 (MacCall, 2005). The 2005 assessment revealed the highest proportion of both recreational (57%) and commercial (65%) catch occurred south of Pt. Conception relative to overall catch off California. The southern model was based on the geographic area where both sunset and vermilion distributions significantly overlap and notably the only model that indicated a precautionary biomass level for a lower bound model (MacCall, 2005). The California Department of Fish and Wildlife reported significant increases in recreational catch for the vermilion complex in recent years (increasing from $\sim 100 \mathrm{mt}$ in 2008 to $\sim 400 \mathrm{mt}$ in 2019). Dick et al. (2021) also reported increased recreational catch for the complex in recent years (2015-2019) but that overfishing is most likely not currently occurring. However, increased recreational catch coupled with a presumed higher level of protection afforded to deeper dwelling introgressed and sunset rockfish, suggests that assessment of the
vermilion complex as distinct species would likely provide better guidance for management of these important resources.

As noted by Hyde (2007), failure to recognize the differences in depth and geographic distribution between the distinct taxonomic components of the vermilion-sunset cryptic pair impacts management, particularly since strategies enacted in the early 2000s to protect multiple overfished rockfish species often incorporated spatial and depth closures. The Rockfish Conservation Area (RCA), the CCAs and other marine reserves restricted fishing in deep waters off California (PFMC, 2008, 2011; MacCall, 2005). Within the extensive CCAs (11,138 km²), catch of all groundfish was restricted in depths deeper than 36.6 m while other closures, such as the RCA, provided seasonal, annual or geographic limits at depths deeper than 55 to 120 m . Both of these geographic and depth-based fishing restrictions likely afforded greater protection to the deeper dwelling and more southerly sunset and introgressed subgroups while potentially exposing vermilion rockfish to the same or higher level of exploitation. Further, the closure of these deeper waters likely shifted some fishing effort into the more nearshore areas inhabited by vermilion rockfish possibly further exacerbating the exploitation of the two sister species relative to one another.

Two lines of evidence suggest that greater exploitation of vermilion rockfish relative to sunset and introgressed rockfish may be occurring within the SCB. As noted previously the proportion of the vermilion rockfish relative to the total catch of the species complex has declined within the SCB compared to earlier years (Hyde et al., 2008), a topic we will explore more fully when a time series of genetic sequencing data for nominal rockfish captured on $\mathrm{H} \& \mathrm{~L}$ surveys from 2004 to 2019 becomes available. Additionally, size frequency distributions seen here for vermilion rockfish exhibit severe truncation at larger sizes, a pattern often correlated
with size selective fishing pressure (Frank et al., 2018). We did not observe a similar pattern for introgressed and sunset rockfish. Based on observed and potential differences between vermilion and sunset rockfish, this research suggests that the appropriate management of this cryptic species complex should more explicitly consider the differences in their respective biology and distribution. This should include research into additional aspects of their life history, including age, growth and reproductive biology. Currently, we plan future studies that will incorporate additional data on maturity and age based on samples collected during multiple years of the $\mathrm{H} \& \mathrm{~L}$ survey.

Acknowledgements

We are grateful for the hard work and dedication of Captain Mike Thompson and the crew of the F / V Aggressor, Captain Joe Villareal and the crew of the F / V Mirage, and Captain R. Don Ashley and the crew of the F / V Toronado. We also recognize Victor Simon for acting as a field party chief and numerous other scientists and volunteers for their assistance in staffing and conducting the 2014 NWFSC's Southern California Shelf Rockfish Hook and Line Surveys. This research has been conducted in conjunction with federal Scientific Research Permit no. SRP-01b-2014; California Department of Fish and Game permit SC-11678; and National Marine Sanctuary Permit Multi-2014-010 with funding from the NMFS Science and Technology Cooperative Research Program. The scientific views, opinions, and conclusions expressed herein are solely those of the authors and do not represent the views, opinions, or conclusions of NOAA or the Department of Commerce. Thanks also to the reviewers who provided thoughtful suggestions, which improved the manuscript and clarity of the analysis.

References

Bellquist, L., Semmens, B.X., 2016. Temporal and spatial dynamics of 'trophy'-sized demersal fishes off the California (USA) coast, 1966 to 2013. Mar. Ecol. Prog. Ser. 547, 1-18.

Berkeley, S.A., Hixon, M.A., Larson, R.J., Love M., 2004. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29, 23-32.

Boehlert, G.W., 1977. Timing of the surface-to-benthic migration in juvenile rockfish, Sebastes diploproa, off southern California. Fish. Bull. 75, 887-890.

Boehlert, G.W., 1978. Changes in the oxygen consumption of prejuvenile rockfish, Sebastes diploproa, prior to migration from the surface to deep water. Physiol. Zool. 51, 56-67.

Boehlert, G.W., 1980. Size composition, age composition and growth of canary rockfish, Sebastes pinniger and splitnose rockfish, S. diploproa, from the 1977 rockfish survey. Mar. Fish. Rev. 42, 57-63.

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach, second ed. Springer, New York.

Daniel, W., 1990. Applied Nonparametric Statistics. PWS-Kent Publishing Company, Boston.
Dick, E.J., Monk, M.H., Rogers, T.L., Field, J.C., Saas, E.M., 2021. The status of vermilion rockfish (Sebastes miniatus) and sunset rockfish (Sebastes crocotulus) in U.S. waters off the coast of California south of Point Conception in 2021. Pacific Fisheries Management Council, Portland, OR.

Frable, B.W., Wagman, D.W., Frierson, T.N., Aguilar, A., Sidlauskas B.L., 2015. A new species of Sebastes (Scorpaeniformes: Sebastidae) from the northeastern Pacific, with a redescription of the blue rockfish, S. mystinus (Jordan and Gilbert, 1881). Fisheries Bulletin 113, 355-377. https ://doi.org/10.7755/FB.113.4.1.

Frank, K.T., Petrie, B., Leggett, W.C., Boyce, D.G., 2018. Exploitation drives an ontogeneticlike deepening in marine fish. Proceedings of the National Academy of Sciences 115, 64226427.

Frid, A., McGreer, M., Haggarty, D.R., Beaumont, J., Gregr, E.J., 2016. Rockfish size and age: The crossroads of spatial protection, central place fisheries and indigenous rights. Glob. Ecol. Conserv. 8, 170-182.

Garvin, M.R., Marcotte, R.W., Palof, K.J., Riley, R.J., Kamin, L.M., Gharrett, A.J., 2011. Diagnostic single-nucleotide polymorphisms identify Pacific ocean perch and delineate blackspotted and rougheye rockfish. Trans. Am. Fish. Soc. 140, 984-988.

Gharrett, A.J., Matala, A.P., Peterson, E.L., Gray, A.K., Li, Z., Heifetz, J., 2005. Two genetically distinct forms of rougheye rockfish are different species. Transactions of the American Fisheries Society 134, 242-260.

Gomez-Uchida, D., Hoffman, E.A., Ardren, W.R., Banks, M.A., 2003. Microsatellite markers for the heavily exploited canary (Sebastes pinniger) and other rockfish species. Mol. Ecol. Notes 3, 387-389.

Harms, J.H., Benante, J.A., Barnhart, R.M., 2008. The 2004-2007 hook and line survey of shelf rockfish in the Southern California Bight: Estimates of distribution, abundance, and length composition. U.S. Dept. Commerce, NOAA Tech. Memo. NMFS-NWFSC-95, 110p.

Harms, J.H., Wallace, J.R., Stewart, I.J., 2010. A fishery-independent estimate of recent population trend for an overfished U.S. West Coast groundfish species, bocaccio rockfish (Sebastes paucispinis). Fisheries Research 106, 298-309.

Hastie, T., Tibshirani, R., 1990. Generalized Additive Models. Chapman and Hall, London.

He, X., Field, J.C., 2017. Stock Assessment Update: Status of bocaccio, Sebastes paucispinis, in the Conception, Monterey and Eureka INPFC areas for 2017. Pacific Fisheries Management Council, Portland, OR.

Hicks, A.C., Wetzel, C., Harms, J., 2014. The status of rougheye rockfish (Sebastes aleutianus) and blackspotted rockfish (S. melanostictus) as a complex along the U.S. West Coast in 2013. Stock Assessment and Fishery Evaluation. Pacific Fishery Management Council, Portland, OR.

Hyde, J.R., 2007. The origin, evolution and diversification of rockfishes of the genus Sebastes (Cuvier): insights into speciation and biogeography of temperate reef fishes. University of California, San Diego, Ph.D. Thesis.

Hyde, J.R., Kimbrell, C.A., Budrick, J.E., Lynn, E.A., Vetter, R.D., 2008. Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Molecular Ecology 17, 1122-1136. doi: 10.1111/j.1365-294X.2007.03653.x

Hyde, J.R., Lynn, E., Humphreys, Jr. R., Musyl, M., West, A.P., Vetter, R., 2005. Shipboard identification of fish eggs and larvae by multiplex PCR, and description of eggs of blue marlin, shortbill spearfish, and wahoo. Mar. Ecol. Prog. Ser. 286, 269-277.

Hyde, J.R., Vetter, R.D., 2009. Population genetic structure in the redefined vermilion rockfish (Sebastes miniatus) indicates limited larval dispersal and reveals natural management units. Canadian Journal of Fisheries and Aquatic Sciences 66, 1569-1581.

Keller, A.A., Frey, P., Wallace, J., Head, M.A., Wetzel, C.R., Cope, J.M., Harms, J.H., 2018. Canary rockfishes (Sebastes pinniger) return from the brink: catch, distribution and life history along the U.S. west coast (Washington to California). Mar. Ecol. Prog. Ser. 599, 181-200.

Keller, A.A., Harms, J., Wallace, J., Benante, J., Jones, C., Chappell, A., 2019. Changes in longlived rockfishes after more than a decade of protection within California's largest marine reserve. Mar. Ecol. Prog. Ser. 623, 175-193.

LaHood, E.S., Miller, J., Apland, C., Ford, M., 2008. A rapid, ethanol-free fish tissue collection method for molecular genetic analyses. Transactions of the American Fisheries Society 137, 1104-1107.

Lea, R.N., McAllister, R.D., VenTresca, D.A., 1999. Biological aspects of nearshore rockfishes of the genus Sebastes from central California with notes on ecologically related sport fishes. Calif. Fish Game Fish. Bull. 177, 1-112.

Le Cren, E.D., 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the Perch (Perca fluviatilis). J. Ani. Ecol. 20, 201-219.

Love, M.S., 2011. Certainly More Than You Want to Know About the Fishes of the Pacific Coast: A Postmodern Experience. Really Big Press, Santa Barbara.

Love, M.S., Morris, P., McCrae, M., Collins, R., 1990. Life history aspects of 19 rockfish species (Scorpaenidae: Sebastes) from the Southern California Bight. NOAA Technical Report 87, Seattle, WA, 38p.

Love, M.S., Passarelli, J.K., 2020. Miller and Lea' s Guide to the Coastal Marine Fishes of California, second ed. Davis, CA: University of California Agriculture and Natural Resources Publication 3556.

Love, M.S., Yoklavich, M., Thorsteinson, L., 2002. The Rockfishes of the Northeast Pacific. UC Press, Berkeley.

MacCall, A.D., 2005. Assessment of vermilion rockfish in Southern and Northern California. Pacific Fishery Management Council, Portland, OR.

Mason, J., Kosaka, R., Mamula, A., Speir, C., 2012. Effort changes around a marine reserve: the case of the California Rockfish Conservation Area. Mar. Policy 36, 1054-1063.

McClure, R.E., 1982. Neritic reef fishes off central Oregon: aspects of life histories and the recreational fishery. Oregon State University, Corvallis, MSc Thesis.

Miller, D.J., Gotshall, D., 1965. Ocean sportfish catch and effort from Oregon to Pt. Arguello, California. Calif. Dept. Fish and Game Fish Bull. 130, 1-135.

Miller, L.A., Kapuscinski, A.R., 1996. Notes: Microsatellite DNA markers reveal new levels of genetic variation in northern pike. Trans. Amer. Fish. Soc. 125, 971-977.

Miller, K.I., Russ, G.R., 2014. Studies of no-take marine reserves: Methods for differentiating reserve and habitat effects. Ocean and Coastal Management 96, 51-60.

NOAA, 2019. Magnuson-Stevens Act Provisions; Fisheries off west coast states; Pacific Coast groundfish fishery. Pacific Fishery Management Plan; Amendment 28. Federal Register 84(223), 63966-63992.

PFMC (Pacific Fishery Management Council), 2008. Pacific coast groundfish fishery stock assessment and fishery evaluation, Volume 1, 221p. Pacific Fishery Management Council, Portland, OR.

PFMC (Pacific Fishery Management Council), 2011. Pacific coast groundfish fishery management plan for California, Oregon, and Washington. December 2011. Pacific Fishery Management Council, Portland, OR.

PFMC (Pacific Fisheries Management Council), 2013. Scientific and statistical committee report on stock assessments: Supplemental Report. Pacific Fishery Management Council, Portland, OR.

Phillips, J.B., 1964. Life history studies on ten species of rockfish (Genus Sebastodes). Calif. Dept. Fish and Game Fish Bull. 126, 1-70.

Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959.

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rocha-Olivares, A., Rosenblatt, R.H., Vetter, R.D., 1999. Cryptic species of rockfishes (Sebastes; Scorpaenidae) in the Southern Hemisphere inferred from mitochondrial lineages. Journal of Heredity 90, 404-411.

Rocha-Olivares, A., Vetter, R.D., 1999. Effects of oceanographic circulation on the gene flow, genetic structure, and phylogeography of the rosethorn rockfish (Sebastes helvomaculatus). Canadian Journal of Fisheries and Aquatic Sciences 56, 803-813.

Sampson, D.B., 1996. Stock status of canary rockfish off Oregon and Washington in 1996.
Appendix C. In: Status of the Pacific Coast groundfish fishery through 1996 and
recommended biological catches for 1997: stock assessment and fishery evaluation. Pacific Fishery Management Council, Portland, OR.

Thorson, J.T., Wetzel, C.R., 2015. The status of canary rockfish (Sebastes pinniger) in the California Current in 2015. Pacific Fisheries Management Council, Portland, OR.

Vaux, F., Rasmuson, L.K., Kautzi, L.A., Rankin, P.S., Blume, M.T., Lawrence, K.A., Bohn, S., O’Malley, K.G., 2019. Sex matters: Otolith shape and genetic variation in deacon rockfish (Sebastes diaconus). Ecology and Evolution 9, 13153-13173.

Wagenmakers, E-J., Farrell, S., 2004. AIC model selection using Akaike weights. Psychonomic Bull. and Review 11, 192-196.

Warlick, A., Steiner, E., Guldin, M., 2018. History of the west coast groundfish trawl fishery: Tracking socioeconomic characteristics across different management policies in a multispecies fishery. Marine Policy 93, 9-21.

Westerman, M.E., Buonaccorsi, V.P., Stannard, J.A., Galver, L., Taylor, C., Lynn, E.A., Kimbrell, C.A., Vetter, R.D., 2005. Cloning and characterization of novel microsatellite DNA markers for the grass rockfish, Sebastes rastrelliger, and cross-specific amplification in 10 related Sebastes spp. Molecular Ecology Notes 5, 74-76.

Wood, S.N., 2006. Generalized Additive Models - An Introduction with R. Chapman and Hall, London.

Wood, S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society 73, 3-36.

Wood, S.N., Pya, N., Saefken, B., 2016. Smoothing parameter and model selection for general smooth models (with discussion). Journal of the American Statistical Association 111, 1548-1575 doi: 10.1080/01621459.2016.1180986

Table 1. Mean (weighted by catch), minimum and maximum latitude (Latitude, ${ }^{\circ} \mathrm{N}$), Depth (m), distance from mainland (Main, nm), and distance from port (Port, nm) shown by subgroups within the vermilion - sunset species complex. Total CPUE (catch adjusted by the number of hooks) and the number of sites with positive catch (n) also shown.

Subgroup	Latitude			Depth			Main			Port			$\begin{gathered} \text { CPUE } \\ \hline \mathrm{n} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Sites } \\ \mathrm{n} \end{gathered}$
	Mean	Min	Max											
Vermilion	34.04	32.45	34.52	98.3	68.4	133	16.6	0.9	84	42.6	2.4	88.7	566	61
Introgressed	33.45	32.01	34.53	132.9	49.2	211	33.7	0.9	87	42.4	3.7	90.6	249	59
Sunset	33.47	32.01	34.52	129.8	68.4	211	31.6	0.9	87	41.2	2.4	90.6	925	87

Table 2. Results from analysis of variance (ANOVAs) comparing natural log transformed latitude $\left(\mathrm{N}^{\circ}\right)$, depth (m), distance (nm) from mainland (Main) and nearest port (Port) for the vermilion-sunset species complex by subgroups (vermilion: V, introgressed: I, sunset: S). We followed significant ANOVAs with the Student-Newman-Keuls (SNK) multiple comparison of means tests and demarcated significant differences among groups as $\mathrm{V}>\mathrm{S}>$ I or, if equivalent, separated by commas, i.e. V>S, I. For significant ANOVAs (p<0.05), we subsequently combined subgroups with no differences, i.e. $S+I$ and repeated the analysis.

Variable	F	p	df	SNK	r^{2}
Depth					
V, S, I	191.9	<0.0001	2,1661	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$	0.19
V, S + I	381.2	<0.0001	1,1662	$\mathrm{~V}<\mathrm{I}+\mathrm{S}$	0.19
Latitude					
V, S, I	138.2	<0.0001	2,1655	$\mathrm{~V}>\mathrm{I}, \mathrm{S}$	0.14
V, S + I	275.1	<0.0001	1,1656	$\mathrm{~V}>\mathrm{I}+\mathrm{S}$	0.14
Main	51.2	<0.0001	2,1655	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$	0.08
V, S, I	98.8	<0.0001	1,1656	$\mathrm{~V}<\mathrm{I}+\mathrm{S}$	0.08
V, S + I					
Port	14.1	<0.0001	2,1655	$\mathrm{~V}>\mathrm{I}, \mathrm{S}$	
V, S, I	27.1	<0.0001	1,1656	$\mathrm{~V}>\mathrm{I}+\mathrm{S}$	0.02
V, S + I				0.02	

Table 3. Comparison of frequency distributions for depth (m), latitude $\left({ }^{\circ} \mathrm{N}\right)$, and distance (nm) from the mainland (Main) and nearest port (Port) for the vermilion-sunset species complex (vermilion: V, introgressed: I, sunset: S) based on a non-parametric, two-sample Kolmogorov-Smirnov analysis. Shown are the Kolmogorov-Smirnov asymptotic statistics $\left(\mathrm{KS}_{\mathrm{a}}\right)$ with p-values (p) between subgroups. Subgroups with no significant differences ($\mathrm{p}>0.05$) were combined ($\mathrm{S}+\mathrm{I}$) and the analysis repeated.

	Depth		Latitude		Main		Port	
Comparisons	KS_{a}	p	KS_{a}	p	KS_{a}	p	KS_{a}	p
V vs S	9.478	<0.0001	8.465	<0.0001	4.950	<0.0001	3.574	<0.0001
V vs I	7.122	<0.0001	5.910	<0.0001	4.149	<0.0001	3.002	<0.0001
S vs I	0.965	0.310	0.758	0.617	0.867	0.440	0.537	0.934
S + I vs V	10.039	<0.0001	8.826	<0.0001	5.340	<0.0001	3.887	<0.0001

Table 4. Mean \pm (standard error, se), minimum (min), maximum (max) and count (n) for length (cm) and weight (kg) for vermilion, introgressed and sunset rockfishes by sex and overall.

	females					males					all
Length	mean $(\pm \mathrm{se})$	\min	\max	n	mean $(\pm \mathrm{se})$	\min	\max	n	mean $(\pm \mathrm{se})$		
Vermilion	$40.67(0.42)$	18	56	268	$41.77(0.36)$	23	52	275	$41.19(0.28)$		
Sunset	$43.23(0.53)$	17	63	473	$43.81(0.46)$	22	60	404	$43.37(0.36)$		
Introgressed	$44.97(1.01)$	16	63	115	$44.74(0.82)$	21	58	120	$44.77(0.64)$		
Weight	mean $(\pm$ se $)$	\min	\max	n	mean $(\pm \mathrm{se})$	\min	\max	n	mean $(\pm$ se $)$		
Vermilion	$1.37(0.04)$	0.12	3.58	267	$1.35(0.03)$	0.22	2.46	275	$1.35(0.03)$		
Sunset	$1.77(0.05)$	0.08	4.54	473	$1.63(0.04)$	0.18	3.66	403	$1.69(0.03)$		
Introgressed	$1.94(0.11)$	0.08	4.66	115	$1.75(0.08)$	0.18	3.48	121	$1.83(0.07)$		

Table 5. Results of analysis of variance (ANOVAs) comparing length (cm) and weight (kg) for the vermilion-sunset species complex by subgroups (vermilion: V , introgressed: I, sunset: S) and sex (female: F, male: M). We followed significant ANOVAs with the Student-Newman-Keuls (SNK) multiple comparison of means tests with significant differences among subgroups demarcated as $\mathrm{V}<\mathrm{S}<\mathrm{I}$ or, if equivalent, separated by commas, i.e. V<I, S. We subsequently combined subgroups with no differences, i.e. $\mathrm{I}+\mathrm{S}$ and repeated the analyses.

Variable	F	p	df	SNK
Length (sex, subgroups)				
F (V, I, S)	8.52	0.0002	2,852	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$
M (V, I, S)	7.80	0.0004	2,793	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$
F (V, I + S)	14.36	0.0002	1,853	$\mathrm{~V}<\mathrm{I}+\mathrm{S}$
M (V, I + S)	14.54	<0.0001	1,794	$\mathrm{~V}<\mathrm{I}+\mathrm{S}$
Weight (sex, subgroups)				
F (V, I, S)	17.97	<0.0001	2,852	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$
M (V, I, S)	17.25	<0.0001	2,793	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$
F (V, I + S)	33.36	<0.0001	1,853	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$
M (V, I + S)	32.50	<0.0001	1,794	$\mathrm{~V}<\mathrm{I}, \mathrm{S}$

Table 6. a) Delta AIC-values (Δ_{i}, the difference between Akaike's information criterion per model and the minimum AIC-value) for weight-length relationships for the vermilion rockfish complex. For fitted relationships, models incorporated sex (female, male) and evaluated combinations of three subgroups within the vermilion-complex: vermilion (V), sunset (S), and introgressed sunset rockfishes (I). The best model ($\Delta_{\mathrm{i}}=0$) included separation by sex and two subgroups (V and a combination of $\mathrm{S}+\mathrm{I}$). Models are shown in order of complexity (number of parameters, n); b) Estimated parameters for the best fit curves relating weight (ln kg) and length (ln cm) based on fitted allometric equations by sex (F: female, M: male) and two subgroups (V and $\mathrm{S}+\mathrm{I}$). Also shown are standard errors (\pm se), number of observations (n), F-values (F), and $\mathrm{r}^{2}, \mathrm{p}<0.0001$ for all equations.
a)

Model description	Δ_{i}	n
Without subgroup, sex	103.9	2
By sex, without subgroup	24.6	4
By subgroup, without sex		
with 2 subgroups (I, V + S)	105.8	4
with 2 subgroups (S, V + I)	98.5	4
with 2 subgroups (V, S + I)	81.2	4
with 3 subgroups (V, S, I)	102.6	6
By subgroup, with sex		
with 2 subgroups (I, V + S) and sex	26.4	8
with 2 subgroups (S, V + I) and sex	16.0	8
with 2 subgroups (V, S + I) and sex	$\mathbf{0 . 0 0}$	$\mathbf{8}$
with 3 subgroups (V, S, I) and sex	22.5	12

b)

sex	subgroup	intercept $(\pm$ se $)$	slope $(\pm$ se $)$	n	F	r^{2}
F	V	$-11.316(0.111)$	$3.112(0.030)$	267	10730	0.98
F	S + I	$-11.087(0.045)$	$3.045(0.012)$	588	62740	0.99
M	V	$-10.833(0.111)$	$2.968(0.030)$	274	9906	0.97
M	S + I	$-10.652(0.054)$	$2.919(0.014)$	523	40280	0.98

Table 7. Comparison of frequency distributions for length (cm) and weight (kg) for the vermilion-sunset species complex (vermilion: V, introgressed: I, sunset: S) based on a non-parametric, two-sample Kolmogorov-Smirnov analysis. Shown are the Kolmogorov-Smirnov asymptotic statistics $\left(\mathrm{KS}_{\mathrm{a}}\right)$ with significant values (p) between subgroups. Subgroups with no significant differences ($\mathrm{p}>0.05$) were combined $(\mathrm{S}+$ I) and the analysis repeated.

	Length (cm)		Weight (kg)	
Comparisons	KS_{a}	p	KS_{a}	p
V vs S	5.523	<0.0001	4.646	<0.0001
V vs I	4.492	<0.0001	4.367	<0.0001
S vs I	0.978	0.294	1.246	0.09
S + I vs V	5.946	<0.0001	5.143	<0.0001

Table 8. a) Delta AIC-values (Δ_{i}, the difference between Akaike's information criterion and the minimum AIC-value) for length-depth and weight-depth relationships for the vermilion rockfish complex. For fitted relationships, models incorporated sex (female, male) and evaluated combinations of three subgroups within the vermilion-complex: vermilion (V), sunset (S), and introgressed sunset rockfishes (I). The best model $\left(\Delta_{i}=0\right)$ included separation into two subgroups (V and a combination of $\mathrm{S}+\mathrm{I}$). Models are shown in order of complexity (number of parameters, n); b) Estimated parameters for the best fit curves relating length (ln cm) and weight (ln kg) with depth (ln m) based on fitted allometric equations for two subgroups (V and $\mathrm{S}+\mathrm{I}$). Also shown are standard errors (\pm se), number of observations (n), F-values (F), and r^{2}. $\mathrm{p}<0.0001$ for all equations.

Model description		Δ_{i} length	Δ_{i} weight	n
Without subgroup, sex		124.3	134.4	2
By sex, without subgroup		123.2	136.3	4
By subgroup, without sex with 2 subgroups ($\mathrm{I}, \mathrm{V}+\mathrm{S}$) with 2 subgroups ($\mathrm{S}, \mathrm{V}+\mathrm{I}$) with 2 subgroups ($\mathrm{V}, \mathrm{S}+\mathrm{I}$) with 3 subgroups (V, S, I)		$\begin{array}{r} 124.2 \\ 48.1 \\ \mathbf{0 . 0} \\ 52.4 \end{array}$	$\begin{array}{r} 136.8 \\ 51.9 \\ \mathbf{0 . 0} \\ 57.6 \end{array}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 6 \end{aligned}$
By subgroup, with sex with 2 subgroups ($\mathrm{I}, \mathrm{V}+\mathrm{S}$) and sex with 2 subgroups ($\mathrm{S}, \mathrm{V}+\mathrm{I}$) and sex with 2 subgroups ($\mathrm{V}, \mathrm{S}+\mathrm{I}$) and sex with 3 subgroups ($\mathrm{V}, \mathrm{S}, \mathrm{I}$) and sex b)		$\begin{array}{r} 123.0 \\ 48.5 \\ 0.6 \\ 52.0 \end{array}$	$\begin{array}{r} 138.6 \\ 54.5 \\ 1.9 \\ 59.6 \end{array}$	$\begin{gathered} 8 \\ 8 \\ 8 \\ 12 \end{gathered}$
Length-depth intercept (\pm se)	slope (\pm se)	n	F	r^{2}
V (0.191)	0.595 (0.042)) 541	203	0.27
$\mathrm{S}+\mathrm{I} \quad 0.545(0.105)$	0.664 (0.022)) 1108	934	0.46
Weight-depth intercept (\pm se)	slope (\pm se)	n	F	r^{2}
V -8.073 (0.592)	1.806 (0.129)) 541	195	0.27
$\mathrm{S}+\mathrm{I} \quad-9.387(0.314)$	2.008 (0.064)	4) 1108	956	0.46

Table 9. Pearson's correlation coefficients (r) among spatial (latitude, Lat, ${ }^{\circ} \mathrm{N}$; longitude, Long, ${ }^{\circ} \mathrm{W}$; distance from nearest port, D, nm) and environmental (dissolved oxygen, DO, $\mathrm{mL} \mathrm{L}^{-1}$; salinity, S , ppt; temperature, $\mathrm{T},{ }^{\circ} \mathrm{C}$; bottom depth, Z, m) variables included in the binomial generalized additive models relating the proportion of vermilion rockfish to the sum of the vermilion, introgressed and sunset rockfish taken at sites within the study area $(\mathrm{n}=106)$.

	Lat	Long	Z	D	DO	S	T
Lat	1.00						
Long	-0.68	1.00					
Z	-0.08	-0.04	1.00				
D	-0.55	-0.20	0.08	1.00			
DO	-0.31	0.38	-0.64	0.05	1.00		
S	-0.07	-0.19	0.78	0.05	-0.82	1.00	
T	-0.06	0.32	-0.72	-0.20	0.72	-0.75	1.00

Table 10. A suite of binomial general additive models (GAMs) analyzed by Akaike's information criterion (AIC) relating the proportion of vermilion rockfish (P_{v}) to environmental (dissolved oxygen, DO, $\mathrm{mL} \mathrm{L}^{-1}$; salinity, S, ppt; temperature, T , ${ }^{\circ} \mathrm{C}$; bottom depth, Z, m) and spatial (latitude, ${ }^{\circ} \mathrm{N}$, longitude, ${ }^{\circ} \mathrm{W}$, Lat, Long; distance from nearest port, D, nm) covariates. Models shown represent the best models as covariates were added and removed during model exploration with the final model determined by the lowest Δ AIC value ($\Delta_{i}=0$). A plus (+) indicates addition of covariates that progressively produced a more parsimonious model, based on reduction in AIC value, for each step in the analysis. A minus (-) indicates removal of a covariate from the analysis, based on a non-significant P -value ($\mathrm{p}>0.05$) and high correlation ($\mathrm{r}>0.72$) with other retained variables. The rank degrees of freedom (df) for AIC-values, deviance explained (\%), unbiased risk estimator (UBRE), and r^{2} are also shown for each model.

Covariate	AIC	Δ_{i}	df	\% deviance	UBRE	r^{2}
Lat, Long	737.7	507.9	30.0	55.7	5.16	0.43
+ Z	261.6	32.0	28.0	91.1	0.66	0.91
+ D	248.2	18.6	33.9	92.9	0.53	0.93
+ DO	243.1	13.5	36.4	93.7	0.48	0.93
+ S	241.0	11.4	31.2	93.1	0.46	0.93
+ T, - D	236.1	6.5	33.2	93.8	0.41	0.94
+ S, D	234.9	5.3	33.6	93.9	0.40	0.94
- S	229.6	0.0	38.4	95.0	0.35	0.95

Figure Legends

Fig. 1. Geographic extent of the Northwest Fisheries Science Center's H\&L survey showing location of the 2014 sample sites in the Southern California Bight relative to the coast of California. Charts show 2014 distributions and relative abundance (site-specific catch per unit effort (CPUE) for: (a) vermilion, (b) introgressed, and (c) sunset rockfish. For each subgroup, the sizes of the circles represent the CPUE (n site ${ }^{-1}$). Note that the range of CPUE varies as shown in the key for each chart; + represents zero catch. Base chart credits: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors.

Fig. 2. Box-whisker plots for: (a) depth (m); (b) latitude (${ }^{\circ} \mathrm{N}$); (c) distance from mainland (nm); and (d) distance from nearest port (nm) for vermilion, sunset and introgressed rockfish. Box limits represent 25% and 75% quartiles; line in center represents the median; X the mean, whiskers the minimum and maximum values and points represent outliers.

Fig. 3. Frequency distributions (\%) comparing: (a) depth (m); (b) latitude (${ }^{\circ} \mathrm{N}$); (c) distance from mainland (nm); and (d) distance from nearest port (nm) for vermilion (upper white bars) versus introgressed plus sunset rockfish (grey lower bars) in 2014.

Fig. 4. Box-whisker plots for: (a) length (cm); and (b) weight (kg) for female, male and all vermilion, sunset and introgressed rockfish. Box limits represent 25% and 75% quartiles; line in center represents the median; X the mean, whiskers the minimum and maximum values and points represent outliers.

Fig. 5. Frequency distributions (\%) comparing: (a) length (cm); and (b) weight (kg) for vermilion rockfish (upper while bars) and introgressed plus sunset rockfish (lower gray bars) from the $2014 \mathrm{H} \& \mathrm{~L}$ survey.

Fig. 6. Fitted allometric relationships for: (a) length (cm); and (b) weight (kg) versus depth (m) for vermilion (red circles) versus introgressed plus sunset rockfish (green circles) showing the
best fit models based on two subgroups: vermilion (solid line) and introgressed plus sunset rockfish (dashed line) from Table 8.

Fig. 7. Binomial generalized additive model (GAM) plots identifying the additive effects of significant covariates: (a) depth (m); (b) distance from port (nm); (c) dissolved oxygen (mL L${ }^{1}$); and (d) temperature $\left({ }^{\circ} \mathrm{C}\right)$ on the proportion of vermilion rockfish $\left(\mathrm{P}_{\mathrm{v}}\right)$ at sampling sites within the H\&L survey area in 2014. Shaded areas reflect the 95% confidence intervals around response curves. Note that ranges on x - and y -axes differ among panels. The y -axis reflects the effect of each covariate on CPUE. The relative density of data is shown by the 'rug' along the x -axis.

Fig. 8. Plots of: (a) latitude (${ }^{\circ} \mathrm{N}$); (b) distance from port (nm); and (c) dissolved oxygen, (mL L${ }^{1}$) versus depth (m) where individual pie charts are scaled by total CPUE (n site ${ }^{-1}$) and represent the proportion of vermilion rockfish versus introgressed plus sunset rockfish observed at each H\&L site in 2014. Note key represents CPUE scaled for 50, 25 and $10\left(\mathrm{n}\right.$ site $\left.{ }^{-1}\right)$; asterisk (${ }^{*}$) represents zero catch.

Wiht (k)
Length (cm)
σ

